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1Mercedes-Benz AG, 2University of Tübingen, 3 Esslingen University of Applied Sciences

Abstract

State-of-the-art approaches for autonomous driving in-
tegrate multiple sub-tasks of the overall driving task into a
single pipeline that can be trained in an end-to-end fash-
ion by passing latent representations between the different
modules. In contrast to previous approaches that rely on
a unified grid to represent the belief state of the scene, we
propose dedicated representations to disentangle dynamic
agents and static scene elements. This allows us to explic-
itly compensate for the effect of both ego and object motion
between consecutive time steps and to flexibly propagate the
belief state through time. Furthermore, dynamic objects
can not only attend to the input camera images, but also
directly benefit from the inferred static scene structure via
a novel dynamic-static cross-attention. Extensive experi-
ments on the challenging nuScenes benchmark demonstrate
the benefits of the proposed dual-stream design, especially
for modelling highly dynamic agents in the scene, and high-
light the improved temporal consistency of our approach.
Our method titled DualAD not only outperforms indepen-
dently trained single-task networks, but also improves over
previous state-of-the-art end-to-end models by a large mar-
gin on all tasks along the functional chain of driving.

1. Introduction
Autonomous systems have evolved from strictly modular
and largely hand-crafted pipelines towards a more holistic
learning-centric paradigm [3, 25]. While the former relies
on explicitly defined interfaces between modules, the lat-
ter tackles the entire driving task in an end-to-end fashion.
Nevertheless, recent work has shown the benefits of retain-
ing a modular structure including typical sub-tasks such as
perception, prediction and planning while allowing latent
features to serve as interfaces between the modules [10, 11].

In contrast to independent, task-specific modules with
fixed pre-defined interfaces, an end-to-end approach en-
ables the joint optimization of the entire pipeline, learning
not only the parameters in each module but also the inter-
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Figure 1. Comparison of Representation Design of unified grid-
based approaches and our dual-stream design. By explicitly dis-
entangling dynamic and static representations, the dynamic stream
can aggregate highly descriptive features. This is achieved through
direct attention to image features, as well as explicit compensation
for object and ego motion, which is not feasible with unified grids.

faces between them. The chosen space of each module’s
latent representation restricts the set of interfaces which
can be learned, allowing to model inductive biases about
the scene structure, e.g. consistent motion of dynamic ele-
ments, or to incorporate task specific properties. However,
this places additional importance on choosing well-suited
intermediate representations, since they heavily affect in-
formation flow and the performance of subsequent modules.
Hence, these representations should be carefully tailored to
their corresponding semantic entities in the driving scene to
achieve a high performing end-to-end architecture.



To model dynamic agents in the scene, a prevalent ap-
proach is to leverage attention with object-centric queries
that detect an individual object in the environment [6, 18,
32]. Furthermore, recent works [7, 30, 36] have demon-
strated the benefits of incorporating temporal information
to consistently model object dynamics and to account for
temporal occlusions. In such work, object-queries provide
dedicated latent representations that each describe a single
object. Its belief state can then be propagated through time
by explicitly compensating for the ego and estimated object
motion between two consecutive timestamps [7, 30].

The most common alternative is to use bird’s-eye view
(BEV)-grid queries [10, 11, 14] as an intermediate repre-
sentation, with subsequent tasks relying solely on this rep-
resentation. However, such a grid is not coupled to semantic
instances and instead represents a spatial area of the scene.
Hence, the motion of agents cannot be explicitly modeled
and compensated for, see Fig. 1. This is due to the fact that
each grid-cell could potentially represent multiple entities
with different rigid motion transforms or even completely
static elements, depending on grid resolution and object
sizes. While grid-based representations are well-suited for
static world perception [14, 16], exclusively relying on them
to aggregate sensor measurements and temporal informa-
tion hampers the perception of highly dynamic agents.

Contributions: In this work, we propose a dual-stream ap-
proach to leverage the potential of object-centric representa-
tions for dynamic agents combined with a BEV-grid repre-
sentation for static scene elements. This dual-stream design
explicitly applies object and ego motion compensation to
dynamic agents and allows object-queries and BEV-queries
to simultaneously attend to the camera images of the current
timestamp. Besides self-attention and cross-attention with
camera images, we introduce a new dynamic-static cross-
attention-block that allows object-queries to attend to the
BEV-queries fostering the consistency between the streams.

Our proposed approach termed DUALAD allows for ro-
bust and temporally consistent perception. On the chal-
lenging nuScenes dataset [1] DUALAD outperforms spe-
cialized state-of-the-art (SOTA) models for various percep-
tion tasks by a large margin. The integration with recent
end-to-end frameworks [10, 11] reveals the importance of
disentangled representations for dynamic agents and static
world elements, and exhibits significant performance gains
along the entire functional chain. Extensive ablation stud-
ies highlight the importance of the dual-stream design for
all driving tasks, while especially improving temporal con-
sistency and the perception of highly dynamic agents.

2. Related Work

Accurate and consistent perception forms the basis for au-
tonomous driving. We structure related literature into three

categories: (i) specialized models for dynamic agents that
perform 3D object detection and 3D multiple object track-
ing, (ii) models that reason about static scene elements
and perform online mapping, and (iii) multi-task end-to-end
models that jointly perform the aforementioned tasks in a
single model and can be optimized end-to-end.

Perception of Dynamic Agents: Based on pioneering
works [2, 32], recent specialized models for 3D object de-
tection utilize a transformer-based architecture with a set of
object-queries to detect objects in the scene [6, 14, 18, 33].
Several extensions have been proposed e.g. to reduce the
memory footprint and to increase the convergence speed, re-
sulting in improved overall performance [13, 38]. Incorpo-
rating temporal information for the perception of dynamic
agents can be achieved by query propagation and there-
fore implicit tracking [14, 24, 30] combined with various
tracking-by-detection approaches [29, 34], or by tracking-
by-attention [7, 36]. For such query propagation, it is cru-
cial to follow an object-centric paradigm. This allows to ag-
gregate descriptive features for each object by performing
attention directly between object-queries and sensor mea-
surements, as well as explicitly compensate for the motion
of objects between consecutive time steps [7, 30].

Another line of work utilizes an intermediate grid of
BEV-queries to propagate information through time [10, 11,
14]. In such approaches, each BEV-query always represents
the same area in the grid and is not coupled to a specific
semantic element. Dynamic agents are then detected using
queries attending to this grid. However, since compensating
for the motion of dynamic agents in the grid is not directly
possible, we opt for an object-centric approach to model
dynamic agents in our dual-stream design.

Perception of Static Scene Elements: Inspired by recent
works on 2D panoptic segmentation [15], current works
that perform online map segmentation rely on BEV-grid-
queries, coupled with a transformer-decoder architecture to
perform BEV map segmentation [10, 14].

Another class of approaches tries to model map percep-
tion tasks in a vectorized fashion, where map elements are
directly modeled as a sequence of points, e.g. by leveraging
map queries [16, 19, 28]. As both variants rely on a tem-
poral BEV-grid to achieve a temporally consistent perfor-
mance, we follow this concept for static world perception.

Multi-Task End-to-End Models: Most recently, different
approaches [10, 11] proposed to model the driving task as a
modular pipeline that is trainable end-to-end. This allows to
optimize the individual modules as well as their interfaces
towards the final driving task. The modules are typically
connected by transformer mechanisms, effectively defining
interfaces in terms of query, key and value triplets.

Inspired by the aforementioned works, we propose a
dual-stream transformer that can be used as the foundation



for various perception tasks as well as for end-to-end multi-
task driving. We simultaneously use object-centric queries
to represent dynamic agents in the scene, while modelling
static scene elements with BEV-grid-queries. This explic-
itly disentangles the representation of static and dynamic
elements in the scene, resulting in a higher temporal consis-
tency, especially for highly dynamic agents. The resulting
architecture combines the potential of SOTA approaches for
dynamic object perception as well as static perception in
a single model, and can directly be integrated with recent
multi-task models to train the entire stack end-to-end.

3. Method
As shown in Fig. 2a, our proposed approach DUALAD
comprises a transformer-decoder-based perception architec-
ture that uses two streams to explicitly model dynamic ob-
jects in an object-centric and static scene elements in a grid-
based fashion. The resulting dynamic and static world rep-
resentations enable various tasks relevant to driving such
as 3D object detection and tracking, map segmentation,
motion prediction as well as planning. Furthermore, our
approach permits an end-to-end optimization of the entire
driving stack as proposed in [10, 11].

At each time step t a set of N multi-view camera im-
ages It is fed into a shared image feature extractor. The
resulting image features Ft are used by both, the dynamic
object as well as the static stream. The former reasons
about dynamic agents in the scene, like cars or pedes-
trians. These agents are represented by a set of object-
queries qobj ∈ Qobj that can be decoded into a bounding
box bt =

[
x, y, z, w, l, h, θ, vx, vy

]
as well as the predicted

class c of the agent. In parallel, a grid of BEV-queries
qBEV ∈ QBEV with dimensions HBEV × WBEV uses Ft to
reason about the static scene. The resulting BEV represen-
tation is used to perform panoptic segmentation of the road
topology, e.g. drivable space or lane markings, utilizing a
segmentation head as proposed in [10, 15].

Interaction between the two streams is enabled by novel
dynamic-static cross-attention blocks (see Fig. 2b) where
the object-queries qobj attend to the BEV-queries qBEV rep-
resenting the static scene structure. Since the temporal rep-
resentations for the dynamic and the static world are disen-
tangled, we can explicitly compensate object and ego mo-
tion for the object-centric queries of dynamic agents while
the static BEV-queries only require a propagation that is de-
pendent on the motion of the ego vehicle.

3.1. Dual Stream Design for End-to-End Driving

Finding a well-suited representation for the belief state of
the scene is key for any transformer-based end-to-end train-
able driving stack as motivated in Section 1. In comparison
to traditional pipelines, the end-to-end paradigm allows the
interfaces to be optimized towards subsequent modules in

the pipeline. Nevertheless, the chosen space of latent rep-
resentations heavily affects the ability to model the relevant
semantic entities and their relations [11, 30].

Whereas unified BEV-grid representations can appropri-
ately handle static content, representing highly dynamic ob-
jects in a BEV-grid is ill-posed, since each cell might de-
scribe multiple entities with different motion patterns, static
scene elements or even a combination of both. We therefore
argue that dynamic objects and static scene content should
be represented separately, and propose a dual-stream archi-
tecture consisting of a dynamic and a static stream.

Dynamic Stream: In DUALAD dynamic objects are mod-
elled with an object-centric representation by using a sin-
gle object-query qobj to describe an individual object in the
scene [6, 7, 18, 30, 32]. To obteain a highly descriptive
representation, we propose that each object-query should
directly perform cross-attention to the image features Ft.
In contrast to unified methods in which only the BEV-grid
queries directly attend to images [10, 11, 14], this enables
to exploit the high spatial resolution of the image features
for more precise detection and tracking.

Following the arguments in [7, 30], we propose to prop-
agate the latent queries qobj to the next timestamp by com-
pensating for the motion between the two timestamps via
a latent transformation that depends on the geometric mo-
tion. In contrast to static scene parts, the observed mo-
tion of objects consists of two separate components: (1) the
motion egot+1Tegot of the ego vehicle and (2) the motion
objt+1Tobjt of the dynamic object itself. For more details
on query propagation, we kindly refer the reader to [7, 30].

In detail, our approach uses the top-k propagated object-
queries of each time step as priors in the subsequent frame,
following an implicit tracking approach as in Stream-
PETR [30] to account for temporary occlusions and to con-
sistently track objects in the scene. In contrast to tracking-
by-attention [7, 10, 36] in which only matched objects are
propagated to the next frame, this allows our model to main-
tain multiple hypotheses for the same object and does not
require explicit track handling. To obtain explicit object
identities, our model can be combined with any tracking-
by-detection approach.

Static Stream: We use a BEV grid-based representation to
model static scene elements. A dense, spatially regular rep-
resentation is well-suited for non-moving objects in the sur-
rounding area. Since all elements in the grid are assumed to
be static, updates over time are incorporated by applying a
rigid transform to the BEV-grid computed from the ego mo-
tion egot+1Tegot . We sample grid features differentiably via
interpolation and use deformable temporal grid-attention as
proposed in [14]. Map segmentation is then performed with
a decoder-only segmentation head [15, 16]. This signifi-
cantly simplifies the map segmentation head as compared
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Figure 2. DUALAD Architecture: Two separate representations are chosen for dynamic agents (Qobj) and static elements (QBEV) as shown
in Fig. 2a. Self- and cross-attention is simultaneously performed in the proposed dual-stream transformer as shown in Fig. 2b, paired with
the novel dynamic-static cross-attention block to allow the dynamic agents to benefit from the inferred scene structure.

to unified grid-based approaches, since those typically re-
quire an additional grid-encoder [10, 14].

3.2. Modelling Interactions between the Dynamic
and Static World

Explicitly disentangling dynamic agents and static scene el-
ements results in two independent streams of the model.
Both streams rely on shared image features Ft, but per-
form self-attention and cross-attention to these features sep-
arately. To enable the network to leverage mutual infor-
mation between static scene elements and dynamic agents,
we propose an additional attention block that performs
dynamic-static cross-attention between the streams.

As shown in Fig. 2b, this is achieved by performing
deformable attention [38] between object-queries qobj and
BEV-queries qBEV of the current timestamp that are close
to the position of the object [14]. In doing so, the dynamic
objects can infer their state update more precisely by con-
sidering not only the sensor information but also the aggre-
gated static BEV-grid, e.g. by incorporating the estimated
information on road layout and lane topology.

Movable Belief State Through Space and Time: Our
dual stream design enables incorporating even unsynchro-
nized sensor input. Whenever sensor information is avail-
able, potentially at arbitrary time intervals, the belief state
of static and dynamic parts can be propagated to that times-
tamp considering ego and object motion. The novel sensor
data is then easily integrated via cross-attention to the avail-
able image features to update the inferred scene state.

Hence, our approach facilitates incorporating sensor
measurements at different points in time while simultane-
ously keeping a temporally consistent representation of the
scene. Our model can also handle cases, where the set of
sensors varies at each time step. This is especially rel-
evant for non-synchronized sensors, e.g. due to different
sensing rates, or even sensor failures. Additionally, this en-
ables to use ground truth annotations that are synchronized

with only a subset of the sensors, as well as getting a model
output at timestamps between sensor measurements, which
might be beneficial for real-time applications [31].

4. Experiments
We evaluate the performance of DUALAD on the challeng-
ing and well-established nuScenes dataset [1]. Additionally,
we integrate our proposed approach into two SOTA end-
to-end trainable driving frameworks, i.e. UniAD [10] and
VAD [11]. We perform extensive ablation studies to evalu-
ate the effect of our design choices and provide additional
insights as well as qualitative results.

Dataset: We utilize the large-scale nuScenes dataset [1]
consisting of 1000 scenes and use the official train- and
val-set split. We adopt the official task definitions for the
object detection task [21] and object tracking task [22], re-
spectively, and follow other recent works [8, 10, 11] for the
definition of the motion prediction and planning objectives.

Metrics: For object detection, we report the main met-
rics mean Average Precision (mAP) and nuScenes Detec-
tion Score (NDS) computed on all ten classes of the dataset,
as well as true positive metrics such as the mean Average
Translation Error (mATE), mean Average Orientation Er-
ror (mAOE), and mean Average Velocity Error (mAVE) as
defined in [21]. For object tracking, we follow the official
metric definition in [22] and report Average Multi Object
Tracking Accuracy (AMOTA) and Average Multi Object
Tracking Precision (AMOTP) as well as recall and num-
ber of identity switches (IDS). For map segmentation, we
closely follow [10] and report BEV segmentation Intersec-
tion over Union (IoU) for different classes. We refer the
reader to [10] for additional details on the metric and class
definitions. For motion prediction, we report the End-to-
end Prediction Accuracy (EPA) [8] as main metric as well
as the true positive metrics minimum Average Displacement
Error (minADE) and minimum Final Displacement Error



(minFDE). For open-loop planning, we report the L2 dis-
tance to the ego trajectory as well as collision rates for 1 s
and 3 s, respectively. A more detailed evaluation including
additional metrics for the different configurations of our ap-
proach can be found in the supplementary.

Training Configuration: We closely follow the settings
in [10, 11, 30] to increase comparability. Unless otherwise
specified, we utilize a VovNet-V2-99 [12] and an image res-
olution of 800×320 pixels. For details on the backbone and
FPN [17] configuration, we refer the reader to [26, 30]. Fol-
lowing [30], we utilize streaming video training. All models
are trained for 24 epochs utilizing a batch size of eight on
eight NVIDIA A100 GPUs with AdamW [20], a learning
rate of 2e−4 and a cosine annealing schedule. DUALAD
performs object detection, tracking, map segmentation, and
motion prediction, as well as open-loop planning. Note that
all tasks are performed jointly in one multi-task model. Fol-
lowing [10], we train the model in a two-stage fashion: the
stage-I model only performs object detection, tracking and
map segmentation, while the stage-II model is optimized for
all tasks in an end-to-end fashion with a frozen image back-
bone for numerical stability. In all perception experiments,
we append -I or -II for clarity e.g. DUALAD-II.

Baselines: Given that our approach follows the object-
query propagation technique used by StreamPETR [30],
and considering that StreamPETR reaches SOTA perfor-
mance on the nuScenes benchmark [21], we choose it as the
main baseline for dynamic object perception. To demon-
strate the performance gains of our proposed architecture
along the entire functional chain, we evaluate the perfor-
mance of DUALAD on downstream tasks for driving, such
as motion prediction and open-loop planning. We choose
the two recent SOTA approaches UniAD [10] and VAD [11]
as baselines since they perform all tasks in an end-to-end
trainable fashion while also following the two-stage training
paradigm. If not all metrics are reported in the correspond-
ing publications, we utilize the published training logs and
code to reproduce the results. For tasks without an official
benchmark, we adopt the evaluation scheme of [10, 11]. It
has to be noted that VAD [11] utilizes a ResNet-50 and a
smaller detection range for the perception and motion pre-
diction tasks. For all comparisons with VAD [11], we con-
figure our model to exactly follow their settings for a fair
comparison. We refer the reader to [11, 28] for additional
details on the configuration and used detection ranges.

4.1. Perception Sub-Task Results

In this section, we analyze the performance of our stage-I
model trained on perception tasks only, to allow for a fair
comparison with SOTA models specialized for perception.

Object Detection: The object detection performance on
the nuScenes validation set [1] is shown in Table 1. Com-

Table 1. Object Detection. DUALAD outperforms task-specific
models as well as end-to-end models on all metrics. We report per-
formance for perception as well as stage-II results for end-to-end
models. *Results taken from official repository [27]. ¶ indicates a
version that uses a ResNet-101 [9], as in UniAD [10].

Name mAP↑ mATE↓ mAOE↓ mAVE↓ NDS↑
BEVFormer[14] 41.6 0.67 0.37 0.27 51.7
SteamPETR[30] 48.2 0.60 0.37 0.26 57.1
UniAD-I*[10] 39.5 0.66 0.36 0.40 50.6
DUALAD-I¶ 48.2 0.59 0.32 0.28 57.4
DUALAD-I 49.5 0.57 0.39 0.26 57.8

UniAD-II[10] 38.1 0.68 0.38 0.38 49.8
DUALAD-II 48.1 0.57 0.41 0.28 56.6

pared to other multi-task models like UniAD [10], DU-
ALAD yields an improvement of +10 (+20%) in terms of
mAP and +7.2 (+12%) in NDS respectively. Compared
to StreamPETR [30], which is only trained on object de-
tection, DUALAD gains an improvement of +1.3 mAP and
+0.7 NDS, resulting in SOTA performance for object detec-
tion. While our model builds on StreamPETR, we attribute
the key improvements over StreamPETR to the newly in-
troduced dynamic-static cross-attention that allows object-
queries to benefit from the static scene structure.

Map Segmentation: The results for map segmentation
of different classes are shown in Table 2. DUALAD yields
comparable performance to SOTA approaches on all classes
while improving the lane segmentation by +2.9 IoU as
compared to UniAD using the same image backbone. As
indicated in [10], the observed improvements in lane seg-
mentation are vital for the accurate perception of dynamic
agents. We want to highlight that our two-stream design
allows the use of a single static BEV encoder instead of
having a unified BEV encoder and an additional static map
encoder. This results in 2.7M (−15%) fewer parameters
for map segmentation as compared to UniAD.

Multiple Object Tracking: The tracking performance of
our model is shown in Table 3. In contrast to explicit track-
ing as in [7, 10] our model only performs implicit tracking
through query propagation. We utilize the widely adopted
tracking approach presented in [34] for a fair comparison to
StreamPETR [30]. DUALAD reaches SOTA performance
in terms of AMOTA and outperforms specialized tracking
approaches like PF-Track [23] by a large margin. Com-
pared to UniAD [10], our approach heavily improves the
AMOTA by +15.8 (+28%) and by +2.5 (+4%) compared
to the specialized StreamPETR, respectively. In particular,
the dual-stream layout leads to a higher temporal consis-
tency of tracked objects, manifesting in a reduction of IDS
by 25% compared to UniAD [10] and StreamPETR [30].



Table 2. Map Segmentation. DUALAD achieves competitive per-
formance, especially improving the segmentation of lanes. ¶ indi-
cates a version that uses a ResNet-101 [9] as in UniAD [10], − a
version only trained on the mapping task without dynamic agents.
We report performance for perception as well as stage-II results for
end-to-end models. *Results taken from official repository [27].
Segmentation IoU(%) is reported for different classes.

Name Lanes↑ Drivable↑ Divider↑ Crossing↑
BEVFormer[14] 23.9 77.5 - -
BEVerse[37] - - 30.6 17.2
UniAD-I* [10] 31.3 69.1 25.7 13.8
DUALAD-I¶ 34.2 69.7 29.7 13.8
DUALAD-I 34.6 70.5 30.2 12.8
DUALAD-I¶− 35.6 71.1 32.3 15.1

UniAD-II*[10] 31.2 69.1 25.9 14.3
DUALAD-II 34.1 70.0 29.9 12.2

Table 3. Multiple Object Tracking. DUALAD achieves high
temporal consistency, heavily outperforming previous SOTA ap-
proaches. ¶ indicates a version that uses a ResNet-101 [9], as
in UniAD [10], + tracking-by-detection approach reimplemented
with BEVFormer [14] in [10]. We report performance for percep-
tion as well as stage-II results for end-to-end models. *Results
taken from official repository [27].

Name AMOTA↑ AMOTP↓ Recall↑ IDS↓
ImmortalTrack+[29] 37.8 1.11 47.8 936
PF-Track[23] 47.9 1.22 59.0 181
StreamPETR[30] 52.6 1.12 59.9 886
UniAD-I*[10] 39.3 1.29 48.1 894
DUALAD-I¶ 52.3 1.12 60.7 726
DUALAD-I 55.1 1.08 60.7 663

UniAD-II*[10] 36.3 1.34 45.9 1177
DUALAD-II 52.6 1.11 59.6 774

Runtime: DUALAD-I perception takes an average run-
time of 193ms. The new Dynamic-Static Cross-Attention
only adds 2.12ms per block, corresponding to 6% of the
total runtime (see Supplementary). A small configuration
with 107ms latency reaches 40.1% mAP and therefore still
outperforms UniAD [10] while being four times faster.

4.2. Integration to End-to-End Pipelines

To demonstrate the performance gains for downstream
tasks like motion prediction and planning, we integrate
our proposed dual-stream architecture into recent end-to-
end trainable driving frameworks that reach SOTA results:
UniAD [10] and VAD [11]. Due to the training focus on
the final motion prediction and planning performance, we
observe, similar to UniAD [10], a slight degradation in per-
ception performance when training in the end-to-end setting
as shown in Table 1, Table 2 and Table 3.

Table 4. Motion Prediction. DUALAD remarkably improves the
motion prediction task within different frameworks. V denotes the
vehicle category and P pedestrians, respectively. *Results taken
from official repository [27, 28]. Please note that VAD [11] and
hence our integration DUALVAD use a smaller detection range
and that results are not directly comparable with other approaches.

EPA↑ minADE↓ minFDE↓
Name V P V P V P

VIP3D[8] 22.2 - 2.05 - 1.95 -
UniAD*[10] 45.6 35.5 0.71 0.78 1.02 1.05
DUALAD 52.4 45.2 0.68 0.63 1.08 0.89

VAD* [11] 64.7 47.4 0.68 0.67 0.92 0.84
DUALVAD 69.8 47.9 0.60 0.67 0.83 0.85

Table 5. Open-Loop Planning. DUALAD achieves lowest L2
error and collision rate, especially for longer planning horizons.
Avg describes the mean over the 1s, 2s and 3s values, DUALVAD
a version of our model that follows the VAD [11] framework.

L2 (m) ↓ Col (%) ↓
Name 1s 3s Avg 1s 3s Avg

UniAD[10] 0.48 1.65 1.03 0.05 0.71 0.31
DUALAD 0.56 1.55 1.03 0.03 0.35 0.17

VAD[11] 0.41 1.05 0.72 0.07 0.41 0.22
DUALVAD 0.30 0.82 0.55 0.11 0.36 0.22

Motion Prediction: The results for motion prediction are
shown in Table 4. Our model significantly outperforms
UniAD by +6.8 (+12%) EPA for the vehicle class and by
+9.7 (+21%) for pedestrians, respectively. A similar effect
is observed for the vectorized framework VAD [11] where
our model improves motion prediction by +5.1 (+7%)
EPA for vehicles. We attribute this to improved modelling
of dynamic agents in the scene and improved motion queues
by direct object to image attention.

Open-Loop Planning: The evaluation of the open-loop
planning performance is provided in Table 5. While we re-
port those results for completeness, we want to highlight
the issues on open-loop planning in nuScenes [1] recently
identified in [35]. We integrate our approach into the plan-
ning modules proposed in [10] and [11] that do not use the
ego status as direct input to planning and follow their cor-
responding evaluation protocols [27, 28]. As shown in Ta-
ble 5, DUALAD reaches comparable performance in terms
of L2 distance compared to UniAD [10] and heavily re-
duces the collision rate up to a factor of two for longer plan-
ning horizons. Similarly, for VAD [11] the L2 error is re-
duced by up to 0.23m (−21%) depending on the planning
horizon. This is in line with our model design since improv-



Table 6. Ablation on the Interaction Design. † denotes UniAD with the detection head of StreamPETR [30] instead of the tracking-
by-attention head proposed in [36]. ∅ denotes a variant of our approach without stream interaction and ↕ a variant that uses bidirectional
stream interaciton.

Name w/Det w/Map Temporal
BEV

Obj2Img
Attn

#Params mAP↑ NDS↑ Lanes↑ AMOTA↑ IDS↓

UniAD-I [10] ✓ ✓ ✓ ✗ - 39.5 50.6 29.3 39.3 894
StreamPETR [30] ✓ ✗ ✗ ✓ - 48.2 57.1 - 52.6 886

UniAD-I†[10] ✓ ✓ ✓ ✗ 111M 43.3 51.2 33.9 45.0 1764
UniAD-I†[10] ✓ ✓ ✗ ✗ 111M 45.3 54.9 34.3 49.4 779
DUALAD-I ✓ ✓ ✗ ✓ 118M 46.9 56.1 31.7 51.6 658
DUALAD-I∅ ✓ ✓ ✓ ✓ 113M 47.7 55.7 33.9 51.9 769
DUALAD-I↕ ✓ ✓ ✓ ✓ 120M 49.3 57.6 33.8 54.4 588
DUALAD-I ✓ ✓ ✓ ✓ 118M 49.5 57.7 34.6 55.1 663

ing temporal consistency, especially for dynamic agents,
might become more relevant for longer planning horizons.

Qualitative Results: Fig. 3 visualizes the performance of
DUALAD in a complex traffic scene. The proposed dual-
stream design enables a temporally consistent perception
of the surrounding area, including highly dynamic agents
and allows for precise motion prediction and planning. A
comparison to the perception of UniAD [10] with respect to
highly dynamic agents is shown in Fig. 4. Additional exam-
ples for both integrated frameworks [10, 11] can be found
in the supplementary.

4.3. Ablations

Effect of Interaction Design: An evaluation of the differ-
ent design choices of DUALAD is shown in Table 6. First,
using a version of our approach with two separate streams
without the proposed dynamic-static cross-attention mod-
ule especially decreases the object detection and tracking
performance. This observation confirms the benefits of the
interaction with the static branch for dynamic agents. Sec-
ond, using a bidirectional stream interaction, where also
the static BEV-queries attend to the dynamic agents, does
not yield significant improvements. This is in line with
our hypothesis that it is sufficient for the static world rep-
resentation to perform cross-attention to the images paired
with temporal self-attention. Third, we incorporate Stream-
PETR’s query propagation [30] as used in our approach
to UniAD [10], which yields consistent improvements but
heavily increases the IDS which might be a result of the
simple greedy tracker [34]. Fourth, DUALAD benefits
as expected from using temporal attention for the BEV-
queries, but we observe the opposite for UniAD [10]. A
version without temporal attention within the unified BEV-
grid in UniAD† has a performance for dynamic agent per-
ception that is increased by +3.7 NDS and 4.4 AMOTA, re-

Table 7. Ablation on Temporal Consistency. DUALAD achieves
consistent tracks even without sensor measurements from each
sensor in each frame. We mimic the effect of non-synchronized
sensors by using the front and back facing cameras in an alternat-
ing fashion (denoted by ⊖).

Name mAP↑ Lanes↑ AMOTA↑ IDS↓
UniAD-I[10] 39.5 29.3 39.3 894
UniAD-I⊖[10] 36.0 28.9 28.3 2062
DUALAD-I 49.5 34.6 55.1 663
DUALAD-I⊖ 42.8 31.5 44.4 940

spectively, while IDS are drastically reduced by 55%. This
supports our claim that the unified grid is not well-suited to
propagate information about dynamic agents through time.

Temporal Consistency, Non-Synchronized Sensors:
Since our proposed dual-stream design can flexibly prop-
agate the belief state through time, we run DUALAD in a
setting with non-synchronized sensors. To do so, we split
the camera images into two sets Cfront containing the three
front-facing cameras and Cback for the rear cameras respec-
tively. We use the inputs of Cfront and Cback in an alter-
nating fashion, leading to three camera inputs per time step
and an effective refresh rate per camera of 1Hz. The re-
sulting performance is shown in Table 7. The restriction of
sensor data to one half of the scene per time step decreases
the performance for both approaches. We observe that the
IDS of UniAD [10] doubles, while DUALAD keeps consis-
tent tracks with only 29% increase in IDS. This observation
again highlights the effectiveness of the dual-stream design.

Effect on Highly Dynamic Agents: Following our hy-
pothesis that the dual-stream design should especially im-
prove the detection of agents with higher velocities, we con-



(a) DUALAD (b) DUALVAD

Figure 3. Qualitative Results. Fig. 3a shows the output of DUALAD for object tracking, map segmentation, motion prediction and
planning. Fig. 3b shows the same scene for the vectorized version DUALVAD of our approach.
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Figure 4. Performance Comparison of DUALAD and
UniAD [10] for two different scenes. Predictions are shown in
orange, ground-truth annotations in blue, ego location with a red
cross. While highly dynamic agents cause perception errors such
as track losses or distorted objects for UniAD, DUALAD consis-
tently captures them due to the proposed dual-stream design.

duct an experiment in which we focus on highly dynamic
agents. More specifically, we evaluate the object detec-
tion performance on objects of the type car, where both,
the absolute and the relative velocity with respect to the
ego vehicle, are higher than 10m/s. The performance of
UniAD [10] drops to 36.3 (−38%) mAP while DUALAD
drops to 47.3 (−25%) mAP, yielding an increased perfor-
mance delta of 5.5mAP. We observe on the one hand that
for both approaches the detection of highly dynamic objects
is particularly challenging. On the other hand, these results
confirm the importance of explicit motion modelling for the
perception of dynamic agents as conducted in DUALAD.

5. Conclusion

This paper presents DUALAD, a novel approach that ex-
plicitly models dynamic agents and static scene elements
in a dual-stream design, where both can directly access the
sensor information. This split explicitly accounts for ob-
ject and ego motion within the dynamic stream, while only
compensating for ego motion within the static stream. The
streams can interact by the newly introduced dynamic-static
cross-attention, facilitating object detection by utilizing the
inferred scene structure around the object.

Our approach not only excels in early-stage perception
tasks such as object detection and online map learning, but
also demonstrates seamless integration with recent end-to-
end models to tackle downstream tasks. In our experimental
evaluation, DUALAD yields significant improvements over
specialized models and reaches SOTA performance for ob-
ject detection, map segmentation, and multiple object track-
ing. Additionally, the integration into end-to-end models
revealed improvements in motion prediction and planning,
highlighting the importance of our dual-stream design for
the entire functional chain.

Whilst our approach results in a robust and temporally
consistent perception of the scene, the integration of other
modalities such as LiDAR could boost the performance
even further, especially combined with the potential of our
model to flexibly move the belief state to different points
in time to incorporate even unsynchronized sensors. The
integration of additional information like traffic signs or
traffic lights, as well as the integration of additional tasks
such as depth-estimation or lane topology reasoning, remain
promising research directions.
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DUALAD: Disentangling the Dynamic and Static World for End-to-End Driving

Supplementary Material

In this supplementary document, we first provide imple-
mentation details of our proposed approach. Furthermore,
we present additional evaluation metrics for all perception
tasks tackled by DUALAD. Next, we discuss experimental
findings regarding our design choices and temporal consis-
tency. Finally, we provide a detailed runtime analysis for
different variants of our model and show additional qualita-
tive results in the attached video file.

6. Implementation Details

Our work is built using the MMDetection3D framework[4].
Furthermore, we inherit various design choices from
StreamPETR [26, 30], UniAD [10, 27] and VAD [11, 28].
We truly thank all authors and contributors of those projects.
Our main model configuration closely follows Stream-
PETR [26, 30] since our dynamic stream design inherits
the proposed query propagation through time as well as the
geometric positional encodings for object-to-image cross-
attention. All choices for the static stream are adopted from
UniAD [10].

Data Augmentation: We use the six surround camera im-
ages of nuScenes as input, down scaled to a resolution of
800× 320 pixels. During training, we apply a random crop
augmentation by choosing a random crop of 47%− 62.5%
of the image before down scaling.

Model Settings: We use a VovNet-V2-99 [12] as im-
age backbone and use the last two feature scales as input
to the FPN [17]. As in previous work, a latent dimen-
sion L = 256 is adopted for all latent embeddings of our
model. We use |Qobj| = 900 object queries consisting
of the top-k propagated from the previous time step with
k = 256 and 644 newly spawned objects queries respec-
tively. For the BEV-queries we follow UniAD [10] and
use |QBEV| = 200 × 200. The used detection range is
[−51.2m, 51.2m] for x and y direction, resulting in an ef-
fective grid resolution of 0.512m.

The proposed dual-stream transformer utilizes six con-
secutive layers and performs self-attention within Qobj,
cross-attention of Qobj, temporal self-attention of QBEV and
the interpolated grid queries from the last frame [10, 14],
cross-attention from QBEV to image features as in [14] and
dynamic-static cross-attention of Qobj and QBEV. For the
dynamic object cross-attention to the image features we
only choose the highest spatial resolution feature scale as
in [26, 30].

During training, we adopt query-denoising [13] and
streaming video training as proposed in [30] to accelerate

the convergence as well as Flash-Attention [5] to reduce the
memory requirements. With the aforementioned settings,
the training for 24 epochs requires 18GB of GPU memory
and takes approximately one day for stage-I and two days
for stage-2 on eight NVIDIA A100 GPUs.

7. Performance Evaluation

We provide evaluation results for various model configu-
rations of DUALAD. As in the main paper, we indicate
all stage-I models that are trained on perception tasks only
e.g. object detection, map segmentation and multiple ob-
ject tracking as DUALAD-I and the configuration that was
trained on all tasks in an end-to-end fashion as DUALAD-
II respectively. Furthermore, we adopt the notation intro-
duced in Table 6 to denote different configurations of DU-
ALAD. The version marked with ∅ does not use the pro-
posed dynamic-static cross-attention, while ↕ describes a
version that uses bidirectional stream interaction by using
global attention for the interaction from the static to the dy-
namic stream. The version of our model that is trained on
the reduced sensor set by using front and back facing cam-
eras in an alternating fashion only is indicated with ⊖.

Object Detection: A detailed evaluation of all metrics
specified in the official nuScenes detection benchmark [21]
is shown in Table 8. For detailed metric definitions, we
kindly refer to [1, 21].

Map Segmentation: The results for all model configu-
rations on map segmentation are shown in table Table 9.
The evaluation is performed for four different classes as
proposed in UniAD [10] and we compute the IoU between
predicted and ground truth segmentation maps.

Multiple Object Tracking: A detailed evaluation of all
metrics specified in the official nuScenes tracking bench-
mark [22] is shown in Table 10. For detailed metric defini-
tions, we kindly refer to [1, 22].

Motion Prediction: A detailed evaluation of motion
prediction results for all dynamic classes of the nuScenes
dataset [1] is shown in Table 11. As in UniAD [10] we
adopt a confidence threshold cmotion = 0.4 during inference
to select object queries that are passed to the motion head.

7.1. Discussion of design choices

The extensive ablations on various tasks and configura-
tions of our proposed approach (see Table 8, Table 9, Ta-
ble 10) validate our different design choices. Our model
consistently benefits from temporal information and the



Table 8. Object Detection Results.

Name Temporal
BEV

Sensor
Drop

mAP↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓ NDS↑

DUALAD-I ✗ ✗ 46.93 0.62 0.27 0.39 0.27 0.18 56.16
DUALAD-I∅ ✓ ✗ 47.74 0.62 0.27 0.45 0.28 0.19 55.78
DUALAD-I↕ ✓ ✗ 49.37 0.58 0.27 0.39 0.26 0.20 57.65
DUALAD-I¶ ✓ ✗ 48.21 0.60 0.27 0.32 0.28 0.20 57.44
DUALAD⊖ ✓ ✓ 42.86 0.65 0.28 0.47 0.32 0.19 52.22
DUALAD-I ✓ ✗ 49.56 0.58 0.26 0.40 0.26 0.20 57.81
DUALAD-II ✓ ✗ 48.16 0.57 0.27 0.41 0.29 0.19 56.68

Table 9. Map Segmentation Results.

Name Temporal
BEV

Sensor
Drop

Lanes↑ Drivable↑ Divider↑ Crossing↑

DUALAD-I ✗ ✗ 31.73 67.52 26.57 10.99
DUALAD-I∅ ✓ ✗ 33.97 69.35 29.49 12.33
DUALAD-I↕ ✓ ✗ 33.86 67.78 29.11 12.18
DUALAD-I¶ ✓ ✗ 34.26 69.71 29.71 13.87
DUALAD⊖ ✓ ✓ 31.53 66.60 26.77 10.14
DUALAD-I ✓ ✗ 34.68 70.50 30.29 12.82
DUALAD-II ✓ ✗ 34.17 70.01 29.96 12.25

proposed dynamic-static cross-attention. Adding another
cross-attention block to perform bidirectional interaction
does not significantly improve the performance of static
map perception or overall temporal consistency, which is in
line with our hypothesis that map segmentation might not
benefit from dynamic agent perception. We leave the inves-
tigation of other interaction designs and other dense tasks
that depend on the dynamic agent perception e.g. free-space
estimation for future work.

The stage-II configuration of our approach yields a
slightly decreased perception performance when compared
to the stage-I model. This could result from the fact that
in stage-II the model might focus on certain scene parts that
are more relevant for the currently planned trajectory. Addi-
tionally, a fast detection of highly dynamic agents and tem-
poral consistency might be crucial for longer planning hori-
zons, which is in line with the improvements of the stage-II
model in terms of Track Initialization Duration (TID) and
Longest Gap Duration (LGD) as shown in Table 10.

The DUALAD-I⊖ version of our model that only has ac-
cess to front or back facing cameras in an alternating fashion
maintains high temporal consistency by query propagation
even without sensor data for some areas in the scene. We re-
fer to the attached video for a qualitative example. However,
the initial detection of newly appeared object is not possible
if no sensor data for the corresponding scene area is avail-
able or consistent tracking might be challenging, especially

for highly dynamic or hardly visible agents in the scene.
Since our base model especially improves over previous ap-
proaches in such challenging cases, this explains the drop in
perception performance by −6.7mAP and −10.7AMOTA
respectively (see Table 8, Table 10).

7.2. Runtime Analysis

We evaluate the runtime of the stage-II configuration of
DUALAD. The results of the entire system as well as the
runtime of the intermediate task modules are shown in Ta-
ble 12. DUALAD runs with 4.12FPS on a single NVIDIA
A100 GPU. The dual stream transformer uses a significant
amount of the model’s total runtime due to the expensive
attention operations from object queries and BEV-queries
to sensor data. Since all downstream tasks use the result-
ing representations, the task heads only add a small amount
of additional runtime. Please note that our codebase con-
tains various operations which could be further optimized.
However, improving the runtime and memory requirements
of end-to-end approaches remains a challenging topic for
large scale application of such approaches.

7.3. Integration to VAD [11]

The version of our model that is based on VAD [11] is de-
noted as DUALVAD, please note that we report the perfor-
mance of the stage-II model to allow for a fair comparison
with the provided model in [28]. In contrast to the other



Table 10. Multiple Object Tracking Results.

Name Temporal
BEV

Sensor
Drop

AMOTA↑ AMOTP↓ RECALL↑ MT↑ ML↓ FAF↓ IDS↓ FRAG↓ TID↓ LGD↓

DUALAD-I ✗ ✗ 51.63 1.16 59.69 3006 2104 49.08 658 671 1.25 1.96
DUALAD-I∅ ✓ ✗ 51.94 1.13 59.27 3107 2148 48.37 769 657 1.24 1.84
DUALAD-I↕ ✓ ✗ 54.39 1.09 61.11 3232 2077 46.76 588 580 1.14 1.70
DUALAD-I¶ ✓ ✗ 52.32 1.13 60.74 3272 1908 49.46 726 695 1.09 1.67
DUALAD⊖ ✓ ✓ 44.39 1.22 53.96 2658 2476 53.57 940 936 1.44 2.01
DUALAD-I ✓ ✗ 55.09 1.09 60.71 3279 2031 46.21 663 588 1.12 1.70
DUALAD-II ✓ ✗ 52.57 1.11 59.62 3159 2166 46.25 774 593 1.07 1.61

Table 11. Motion prediction results of DUALAD-II for all object
categories on the nuScenes benchmark [22].

Name EPA↑ minADE↓ minFDE↓ miss rate↓
Car 54.97 0.35 0.39 0.035
Truck 43.12 0.37 0.38 0.017
Bus 42.31 0.51 0.56 0.057
Trailer 26.79 0.55 0.53 0.017
Pedestrian 45.28 0.46 0.61 0.003
Motorcycle 39.02 0.32 0.37 0.011
Bicycle 36.89 0.28 0.30 0.002

Table 12. Runtime evaluation of DUALAD-II on a single
NVIDIA-A100 for 500 frames of the nuScenes validation set.
Misc describes various non-optimized computations e.g. bound-
ing box decoding and positional encodings.

Module Runtime (ms) ↓
Image Backbone 19
Dual Stream Transformer 59
Detection Head 17
Map Head 23
Motion Head 24
Planning Head 39
Misc 80

Total 242

configurations, VAD relies on a ResNet-50 [9] as image
backbone, an input resolution of 1280× 720 pixels [11, 28]
and a shorter detection range around the ego vehicle of
[−30m, 30m] in x and [−15m, 15m] in y respectively. A
detailed evaluation of the perception performance is given
in Table 14. DUALVAD outperforms VAD [11] by +2.7
mAP for dynamic object perception and achieves a slightly
higher vectorized map perception performance while also
heavily improving downstream tasks such as motion predic-
tion (see Table 4) and open-loop planning (see Table 5). The
runtime of DUALVAD-II is shown in Table 13. In this con-
figuration, our model runs at 3.32FPS on a single NVIDIA

Table 13. Runtime evaluation of DUALVAD-II on a single
NVIDIA-A100 for 500 frames of the nuScenes validation set.
Misc describes various non-optimized computations e.g. bound-
ing box decoding and positional encodings.

Module Runtime (ms) ↓
Image Backbone 11
Dual Stream Transformer 114
Detection Head 58
Map Head 4
Motion Head 7
Planning Head 3
Misc 104

Total 301

A100 GPU. Due to the larger input image size, the run-
time of the dual stream transformer increases significantly
as compared to our base configuration.

7.4. Qualitative Results

Together with this document, we provide a video that shows
qualitative results of our approach for various scenes from
the nuScenes validation set. Those include complex traffic
scenes, a setting with unsynchronized sensors, challenging
lighting and adverse weather conditions and results for the
vectorized map representation. DUALAD-II demonstrates
robust and consistent performance for all perception tasks,
as well as downstream performance for motion prediction
and open-loop planning.



Table 14. Perception Results for VAD [11] based models. *Results taken from official repository. mAPMap denotes the mAP of vectorized
map perception as defined in [11, 16].

Name mAP↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓ NDS↑ mAPMap↑
VAD [11]* 33.92 0.59 0.28 0.53 0.40 0.23 46.02 47.5
DUALVAD-II 36.64 0.59 0.27 0.57 0.35 0.23 48.00 47.9
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